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Abstract
The macroscopic equations derived from the lattice Boltzmann equation are not
exactly the Navier–Stokes equations. Here the cubic deviation terms and the
methods proposed to eliminate them are studied. The most popular two- and
three-dimensional models (D2Q9, D3Q15, D3Q19, D3Q27) are considered
in the paper. It is demonstrated that the compensation methods provide only
partial elimination of the deviations for these models. It is also shown that
the compensation of Qian and Zhou (1998 Europhys. Lett. 42 359) using the
compensation parameter K = 1 in a D2Q9 or D3Q27 model can eliminate all
the cross terms perfectly, but the deviation terms ∂xρu3

x, ∂yρu3
y and ∂zρu3

z still
survive the compensation.

PACS numbers: 47.45.−n, 02.60.−x, 05.50.+q, 47.11.+j

1. Introduction

The lattice Boltzmann method is a relatively novel simulation technique in the field of
computational fluid dynamics. Although the method can be used to solve a wide variety
of macroscopic equations, it was originally proposed to model the incompressible Navier–
Stokes equations in the low Mach number limit [2].

Macroscopic equations can be derived from the lattice Boltzmann equation through a
Chapman–Enskog expansion. The derivation yields not exactly the incompressible Navier–
Stokes equations. One part of the deviations can be considered as a kind of truncation error
and can be reduced by increasing the resolution of the simulation just as for conventional
finite difference schemes. The other part is often referred to as the compressibility error
because it can be reduced by decreasing the Mach number (unless it is a relevant parameter
of the problem in question). One contribution for the compressibility error comes from a
cubic term not being present in the Navier–Stokes equations but appears in the macroscopic
equations derived from the lattice Boltzmann equation. Recently, it has been demonstrated
that the third-order deviation terms can reduce the accuracy of the lattice Boltzmann method,
for instance, in the initial stage of two-dimensional decaying turbulence [3].
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First, Qian and Orszag derived the deviation term for an athermal lattice Boltzmann model
[4]. Weimar and Boon proposed a deviation free model with 13 lattice links to study reactive
flows [5]. Chen et al [6] studied third-order effects in thermal lattice Boltzmann models. They
proposed model parameters for a two-dimensional model with 16 lattice links and showed that
this model is free of the third-order velocity deviation. Considering athermal situations Qian
and Zhou [1] presented a two-dimensional model with 17 lattice links (D2Q17), and proposed
a method to eliminate the third-order velocity deviation term.

It is worth emphasizing that all the methods mentioned above share some properties,
e.g., next-neighbouring lattice sites are used during the streaming step. The question arises
naturally: is it possible to eliminate the cubic deviation term in simple models (e.g. in a two-
dimensional nine-velocity D2Q9 model), where we consider only neighbouring sites during
the propagation?

To answer the question, the compensation of Qian and Zhou is revised in details. First,
we derive the compensation parameter for the D2Q17 model. We show analytically that
there is no parameter with real value, which can make a perfect elimination for a D2Q17
model. However, we also demonstrate that using the parameters of Qian and Zhou, part of the
deviation terms can be compensated and as a consequence, when studying simple shear flows,
one can draw the faulty reasoning that the compensation is perfect. Most importantly, we
show that using the same compensation parameter one can achieve partial compensation for
the simpler two-dimensional nine-velocity (D2Q9) and the three-dimensional 15- (D3Q15),
19- (D3Q19) and 27-velocity (D3Q27) models. Numerical examples are presented to support
our analytical results. Based on these results we also discuss the range of problems where the
various models can be applied.

2. The lattice Boltzmann method

The lattice Boltzmann equation can be written as follows:

fσ,i(x + cσ,iαδ, t + δ) − fσ,i(x, t) = �σ,i(x, t), (1)

where fσ,i is the one particle velocity distribution function, cσ,iα is the lattice vector, δ is the
time step, � is the collision operator, σ is the particle velocity group and i is the index of the
lattice links. The simplest form of the collision operator is given by

�σ,i(x, t) = − 1

τ

[
fσ,i(x, t) − f

eq
σ,i(x, t)

]
. (2)

This so-called Bhatnagar–Gross–Krook (BGK) operator prescribes a simple relaxation process
towards local equilibrium.

The macroscopic quantities are obtained from the distribution functions by taking their
suitable moments

ρ =
∑
σ,i

fσ,i , ρuα =
∑
σ,i

cσ,iαfσ,i . (3)

The local equilibrium distribution function plays a crucial role in the lattice BGK models.
Here we use the form proposed by Qian and Zhou [1]:

f
eq
σ,i = ρwσ,i

[
1 +

uγ cσ,iγ

c2
s

+
uγ uζ

2c4
s

(
cσ,iγ cσ,iζ − c2

s δγ ζ

)

+ K
uγ uζuηcσ,iγ

6c6
s

(
cσ,iζ cσ,iη − 3c2

s δζη

)]
, (4)
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where wσ,i is the lattice weight and cs is the speed of sound. Hereupon the repeated Greece
indices imply summation.

The above form of the local equilibrium distribution is a low Mach number expansion
of the Maxwell–Boltzmann distribution. For athermal simulations terms are kept only up
to second order, because it is sufficient to assure conservation of mass and momentum [7].
Third-order terms have to be taken into account for conservation of energy in thermal models.
On the other hand, it is obvious that we need to work with third-order terms even in an athermal
model, if we want to influence the third-order deviations. The role of the parameter K is to
control the appearance of the third-order terms, assuring the cancellation of the deviation
terms.

It is worth mentioning that specifying somewhat more general form of the equilibrium
distributions, both the models of Weimar and Boon [5] and Chen et al [6] provide more
freedom in the parameter choice of the equilibrium distributions. The following form of the
equilibrium is used in the model of Weimar and Boon [5]:

f
eq
σ,i = ρwσ,i

[
1 +

uγ cσ,iγ

c2
s

+
uγ uζ

2c4
s

(
cσ,iγ cσ,iζ − c2

s δγ ζ

)

+ Ei

uγ uζuηcσ,iγ

6c6
s

(
cσ,iζ cσ,iη − 3Fic

2
s δζη

)]
. (5)

Note that this form differs from the model of Qian and Zhou only in the treatment of the
third-order terms, which here can be controlled by two parameters (Ei, Fi) instead of one (K).
In the thermal model of Chen et al [6] practically the same form as (5) is used. The only
difference is that those authors considered the expansion up to fourth order and in this way
the deviation terms of the energy equations become accessible, too. So the model of Qian and
Zhou reduces to the model of Chen et al for Ei = K and Fi = 1.

In lattice Boltzmann models the lattice has to be sufficiently symmetric, ensuring the
necessary isotropy in macroscopic level. The suitable lattices yield vanishing odd-rank
tensors and isotropic even-order tensors up to sixth and fourth rank for thermal and athermal
simulations, respectively.

These constraints can be expressed as follows: T (1)
α = T

(3)
αβγ = T

(5)
αβγ ζη = 0 and

T
(2)
αβ =

∑
σ,i

wσ,iciαciβ = �2δαβ, (6)

T
(4)
αβγ ζ =

∑
σ,i

wσ,iciαciβciγ ciζ = 4�αβγ ζ + �4(δαβδγ ζ + δαγ δβζ + δαζ δβγ ), (7)

T
(6)
αβγ ζηθ =

∑
σ,i

wσ,iciαciβciγ ciζ ciηciθ = 6�αβγ ζηθ

+ �6

∑
k,cpk{α,β,...,θ}

δαβ�γζηθ + �6

∑
k,cpk{β,γ,...,θ}

δαβT
(4)
γ ζηθ , (8)

where δ,� are

δαβ =
{

1 α = β

0 otherwise,

�αβγ ζ =
{

1 α = β = γ = ζ

0 otherwise,

�αβγ ζηθ =
{

1 α = β = γ = ζ = η = θ

0 otherwise
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and

cpk : I = {a1, a2, . . . , aj , . . . , an} → Icp = {
ia1 , ia2 , . . . , iaj

, . . . , ian

}
,

iaj
= a(j+k) mod(n).

All other parameters are lattice specific constants.
For a specific lattice one can usually simplify the above expressions. For the models

considered in this paper (D2Q9, D2Q17, D3Q15, D3Q19, D3Q27) direct computation can be
used for the calculation of (8) obtaining c2

s when all indices are the same and c4
s when there

are four identical indices and the remaining indices are different e.g. ( yyyyxx).
Consequently one can express the sixth-order tensor (8) as follows:

T
(6)
αβγ θζη = 6�αβγ ζηθ + �6Pαβγ θζη,

where

Pαβγ θζη = δαβ�γζηθ + δαγ �βζηθ + δαζ �βγηθ + δαη�βγ ζθ + δαθ�βγ ζη + δβγ �αζηθ

+ δβζ �αγηθ + δβη�αγ ζθ + δβθ�αγ ζη + δγ ζ �αβηθ + δγη�αβζθ

+ δγ θ�αβζη + δζη�αβγ θ + δζθ�αβγη + δηθ�αβγ ζ .

3. Two-dimensional models

The lattice vectors c and the weights wσ,i of a D2Q9 model are specified in [7]. The speed of
sound in this model is given by cs = 1/

√
3.

Substituting the c and wσ,i parameters into (6) and (7) one can show that �2 = c2
s , 4 = 0,

�4 = c4
s and the coefficients of the sixth-order tensor can be obtained by solving

6 + 15�6 = c2
s , �6 = c4

s , (9)

yielding finally

6 = c2
s − 15c4

s . (10)

The lattice vectors c of the D2Q17 model of Qian and Zhou were specified in [1].
The lattice weights need to be found subject to conservation of mass and momentum,

isotropy of the stress tensor and Galilean invariance in macroscopic level. Using these
constraints and the lattice relations (6)–(8) it is easy to derive the following equations for the
weights:

2w1 + 4w2 + 8w3 + 16w4 = �2, (11)

w0 + 4(w1 + w2 + w3 + w4) = 1, (12)

where �2 = c2
s ,

2w1 + 4w2 + 32w3 + 64w4 = 3�4, (13)

4w2 + 64w4 = �4, (14)

where �4 = c4
s , 4 = 0,

2w1 + 4w2 + 128w3 + 256w4 = 6 + 15�6, (15)

4w2 + 256w4 = �6 (16)

and 6, �6 will be determined later on.
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Equations (11)–(16) form an equation system with six unknowns (w0, . . . , w5, cs).
Satisfying this system by choosing suitable model parameters, one can derive the following
macroscopic equations through a Chapman–Enskog expansion:

∂tρ + ∂α(ρuα) = 0,

∂t (ρuβ) + ∂α(ρuαuβ) = −∂β

(
ρc2

s

)
+ 2ν∂α(ρSαβ) + O(u3),

(17)

where the strain rate tensor is defined as follows:

Sαβ = 1
2 (∂αuβ + ∂βuα)

and the kinematic viscosity is given by

ν = δc2
s

(
τ − 1

2

)
.

4. Perfect compensation of the nonlinear deviation

The macroscopic equations (17) are accurate up to second order in δ and the momentum
equation has an unphysical third-order velocity term [1]:

∂γ ρuαuβuγ . (18)

The deviation terms can be significant when the density gradient or the velocity is high,
such as in relatively high Mach number flows.

In order to eliminate the deviation terms, Qian and Zhou [1] proposed to choose a proper
model parameter K. Accordingly, we have to satisfy the following equation:

∂γ ρuαuβuγ = − K

6c6
s

∂θρuγ uζuη

(
T

(6)
αβγ θζη − 3c2

s δζηT
(4)
αβγ θ

)
. (19)

From (19), substituting the lattice relations (7), (8), simplifying and considering the case
α = β = x a long but simple equation can be derived without loss of generality. The
equation implies that the following relations have to hold for a perfect elimination of the cubic
term in 2D:

K

(
6

6c6
s

+ 15
�6

6c6
s

− 3

2

)
= 1,

�6

6c6
s

− 1

2
= 0,

�6

2c6
s

− 1

2
= 1. (20)

The solution of this system is given by

K = 1, �6 = 3c6
s , 6 = −30c6

s . (21)

That is, for a complete elimination of the cubic term in 2D we have to use the compensation
parameter K = 1 and equations (11)–(16) have to be solved by using the parameters
given by (21).

Unfortunately, there is no solution with real roots for (11)–(16) and the parameters
obtained above. Therefore, a perfect elimination is not possible for a D2Q17 model. The
same conclusion can be achieved in the case of a D2Q9 model. Indeed, we have found relation
(10) and for the commonly used D2Q9 relations in (21) cannot be satisfied.

Note that the problem with this kind of compensation is that one has only two free
parameters and three equations (20). To overcome this problem one has to introduce an
additional parameter which makes (20) well determined. This approach is used in both [5]
and [6].

Their approach is based on the fact that the Navier–Stokes equations can be obtained
without cubic deviations, as far as the equilibrium distribution function satisfies the following
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relations: ∑
σ,i

f
(0)
i = ρ, (22)

∑
σ,i

cσ,iαf
(0)
i = ρuα, (23)

∑
σ,i

cσ,iαcσ,iβf
(0)
i = pδαβ + ρuαuβ, (24)

∑
σ,i

cσ,iαcσ,iβcσ,iθf
(0)
i = ρuαuβuθ + p∂θ (uθδαβ + uαδβθ + uβδαθ ). (25)

The last constraint assures the cancellation of the cubic deviation terms. Indeed, as a result
of the Chapman–Enskog expansion one arrives at the following form of the non-equilibrium
stress tensor (see, e.g., [11] for details):

�
(1)
αβ = −τ

[
∂t0ρuαuβ − c2

s δαβ∂γ ρuγ + ∂θSαβθ

]
,

where

∂θ

∑
σ,i

cσ,iαcσ,iβcσ,iθf
eq
i = ∂θSαβθ = c2

s (δαβ∂γ ρuγ + ∂βρuα + ∂αρuβ).

The first term of the non-equlibrium stress can be simplified using the first-order equations
of the expansion, the Euler equations, obtaining

∂t0ρuαuβ = −uβ∂γ ρuαuγ − uβ∂αρc2
s − uα∂βρc2

s − ρuαuγ ∂γ uβ.

Using this relation the non-equilibrium stress tensor can be rewritten as follows:

�
(1)
αβ = −τ

[
−uβ∂γ ρuαuγ − uβ∂αρc2

s − uα∂βρc2
s − ρuαuγ ∂γ uβ

− c2
s δαβ∂γ ρuγ + ∂θSαβθ

]
. (26)

In order to cancel the third-order terms we add the term ∂θρuαuβuθ to ∂θSαβθ , so that the
following condition has to be fulfilled:∑
σ,i

cσ,iαcσ,iβcσ,iθf
eq
i = ρuαuβuθ + Sαβθ = ρuαuβuθ + p∂θ (uθδαβ + uαδβθ + uβδαθ ).

This is the condition for the equilibrium, which has to be applied in order to eliminate the
cubic velocity deviation. It was originally introduced by Chen et al [6] and later used by
Weimar and Boon [5].

Using the lattice relations (6)–(8), it can be verified that the equilibrium distribution
proposed by Chen et al [6] and used up to third order also by Weimar and Boom can satisfy
this constraint by suitable model parameters. In contrast the equilibrium distribution of Qian
and Zhou [1] does not do it.

5. Partial compensation of the nonlinear deviation

It can be shown that satisfying relations (20), part of the deviations can be eliminated and
the only remaining deviation term is ∂xρu3

x (and ∂yρu3
y considering α = β = y) in 2D.

Consequently, a partial elimination can be achieved by choosing �6 = 3c6
s , which is just the

case for a D2Q9 model
(
3c6

s = c4
s

)
. Furthermore, we can determine the coefficient of the

remaining deviation term from equation (20) as follows:(
6

6c6
s

+ 15
�6

6c6
s

− 3

2

)
− 1 = 1.
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Accordingly, using a D2Q9 model with a compensation parameter K = 1 part of the
deviation terms are perfectly eliminated and the remaining error terms are not influenced
at all.

Now, let us consider the D2Q17 model.
In the previous section we found no way to obtain model parameters satisfying the system

of equations (11)–(16). However, using the model parameters presented by Qian and Zhou
(e.g. c2

s = 0.374 0845) one can find that the equation system is satisfied with the value
6 = −1.752 9650. With this value the coefficient of the remaining error term can be written
as follows: (

K6

6c6
s

+ 15
K�6

6c6
s

− 3K

2

)
− 1 = −0.581 01,

which means that using the model of Qian and Zhou part of the deviations are cancelled
perfectly, but still some deviation terms remain.

6. Three-dimensional models

Let us consider now popular three-dimensional models. The lattice vectors and weights of the
D3Q15, D3Q19 and D3Q27 models can be found, e.g., in [10]. The speed of sound is given
by cs = 1/

√
3 for all these models.

Substituting the parameters of the above-mentioned three-dimensional models into (6)
and (7) one can show that the same relations can then be obtained for the D2Q9 model, i.e.
�2 = c2

s , 4 = 0, �4 = c4
s and 6 = c2

s − 15c4
s . Substituting the lattice relations (7) and (8)

into (19), simplifying and considering the case α = β = x, a simple equation can be derived
without loss of generality. Just as for the D2Q9 model, the equation implies that relations (20)
should be satisfied supplementing by an additional constraint: K/2 = 0. Since this constraint
contradicts the first equation in (20), therefore, a perfect compensation is not possible in such
models. However, using similar arguments then in the two-dimensional models, we can reduce
the deviations in three-dimensional models, too.

That is, with the choice of K = 1 we can reduce the value of the cross terms. The
reduction is perfect in the case of the D3Q27 model, but it is only partial for D3Q15 and
D3Q19 models. Besides these deviations we still have the terms ∂xρu3

x, ∂yρu3
y and ∂zρu3

z,

which will not be affected at all by the compensation. It is worth mentioning that in the three-
dimensional models studied the more general form of the compensation (5) does not help to
further reduce the deviations. It is worth noting that the same conclusion can be achieved by
simply considering the constraint (25).

7. Numerical results

7.1. Decaying shear flow

In [1], the effect of the compensation was demonstrated by simulating shear flow in a moving
frame, measuring the effective viscosity, which is influenced by the third-order deviation term.
It has been shown that the effective viscosity does not change with the frame velocity when
the compensation is in action.

The decaying shear flow in a moving frame is specified by the following velocity and
pressure (density) fields:

ux = A, uy = B cos(x − At) e−νt , ρ = const,

where A determines the frame velocity.
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Figure 1. Effective viscosity in a D2Q9 model using various frame velocities and compensation
parameters.

Note that for this flow the ∂xρu3
x and ∂yρu3

y terms vanish by definition; therefore, complete
compensation of the cubic deviation can be achieved by a D2Q17 or a D2Q9 model.

In order to demonstrate this fact, we simulated decaying shear flow using different frame
velocities. Simulation results are shown in figure 1 for the D2Q9 model (similar figure is
shown in the paper of Qian and Zhou for the D2Q17 model). The solid line represents the
analytical viscosity.

As one can see in figure 1, the viscosity is velocity independent only when the
compensation parameter K = 1. This parameter can be used for both models and it
provides perfect elimination of the cubic terms at least for shear flow simulations. Without
compensation or using a compensation parameter K �= 1, one makes the effective viscosity
velocity dependent due to the cubic deviations.

7.2. Acoustic waves

In order to test our analytical results further, we considered flows where the ∂xρu3
x term does

not vanish. Such flow, for instance, is a plain sound wave. The performance of the lattice
Boltzmann method for the simulation of linear and nonlinear acoustics has been studied by
Buick et al [8, 9] at low Mach numbers. Here we study the performance of the compensated
method simulating sound waves with various amplitudes. So the initial condition is given as
follows:

ux = A
cs

ρ0
sin(x), uy = 0, ρ = ρ0 + A sin(x).

Simulations were performed using both the D2Q17 and D2Q9 models with and without
compensation. The simulation domain is a rectangle with the size NX = 256, NY = 4. In
figure 2, the time development of the normalized velocity is shown at the point NX/4 for
D2Q17 simulations in which the amplitude of the wave was varied in a range [0.01, 0.2] by
the parameter A. The relaxation time is unit. The solid lines show the normalized velocities
obtained by a compressible pseudospectral code using the corresponding model parameters.
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Figure 2. Evolution of the decaying sound waves at the position NX/4 using various initial velocity
amplitude (D2Q17 model).
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Figure 3. Cummulative absolute error of the standard and compensated methods (D2Q17
model—u = 0.3).

With increasing amplitude the linear theory breaks down and the waves start to take their
‘N’ shape. The agreement is excellent at low velocities and quite reasonable up to the velocity
amplitude 0.1.
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Varying the amplitude of the wave we found no effect of the compensation at all for the
D2Q9 model. This observation is in line with the analytical results, since we have seen that the
compensation does not influence the term ∂xρu3

x while the cross terms ∂xρuxu
2
y and ∂yρuyu

2
x

vanish by definition of the flow. The situation is different for the D2Q17 model. Here the
coefficient of the term ∂xρu3

x is changed by the compensation and this effect could be observed
in figure 3 where the cumulative absolute error is shown for the standard and the compensated
methods.

8. Conclusion

Compensation of the third-order velocity deviations in lattice Boltzmann methods has been
studied. It has been shown that using the model originally proposed by Qian and Zhou one
can eliminate only part of the third-order velocity deviations. We have demonstrated that
this compensation also works for D2Q9, D3Q15, D3Q19 and D3Q27 models, using the same
control parameter K = 1. Unfortunately, the compensation is incomplete for all the models
studied.

In the two-dimensional models the terms ∂xρu3
x and ∂yρu3

y will survive the compensation.
Using a D2Q9 model with compensation, the above terms remain untouched, while in a D2Q17
model these terms can be reduced only slightly. The compensation appears to be complete only
for certain 2D numerical problems where these terms do not play any role, such as in simple
shear flows used by [1] to demonstrate the efficiency of their method. The remaining deviation
terms reduce the accuracy of the solution of acoustic problems as it has been demonstrated
through numerical experiments. Concluding, in 2D shear flows one should prefer the D2Q9
model to D2Q17 with the compensation parameter K = 1. For acoustic problems we propose
to use the model of Weimar and Boon [5], which is free of the cubic deviations.

In the three-dimensional D3Q15 and D3Q19 models the compensation is less efficient,
since besides the terms ∂xρu3

x, ∂yρu3
y and ∂zρu3

z , all cross terms will survive the compensation
and their value is only slightly reduced. In the case of the D3Q27 model, the parameter
K = 1 provides perfect compensation of the cross terms, but even in this model the terms
∂xρu3

x, ∂yρu3
y and ∂zρu3

z remain unaffected. The more general form of the compensation (5)
cannot provide further reduction of the deviations in these models.

Accordingly, for three-dimensional shear flows the application of the D3Q27 lattice with
the compensation parameter K = 1 should be used. In three dimensions, one should use one
of the models of Chen et al [6] in order to eliminate the cubic deviations perfectly.
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